Rumus Mencari Keliling Lingkaran Diketahui Luas

Rumus Mencari Keliling Lingkaran Diketahui Luas

Contoh soal keliling lingkaran

Cara menghitung keliling lingkaran pun cukup sederhana. Kamu hanya perlu memasukkan angka-angka yang tersedia ke dalam rumus. Lalu, lakukan perkalian atau pembagian sesuai dengan posisinya masing-masing.

Biar gak bingung, langsung coba contoh soal keliling lingkaran di bawah ini, yuk!

Rumus Keliling Lingkaran

Merujuk pada Buku Kumpulan 100 Soal Hots dan Pembahasan Bangun Datar dari Penerbit CV Madani Jaya, lingkaran mempunyai sifat-sifat meliputi terdapat sebuah titik pusat, terdiri dari satu sisi, tidak memiliki titik sudut dan jumlah sudutnya 360 derajat, mempunyai jari-jari (r) dan diameter (d), serta simetri lipat dan simetri putar tidak terhingga.

Baca berita dengan sedikit iklan, klik di sini

Adapun rumus keliling lingkaran sebagai berikut:

Adanya Jari-Jari Tabung

Sifat pertama dari tabung adalah adanya jari-jari yang terletak pada bagian atas dan bagian alas tabung. Jari-jari pada tabung ini berfungsi untuk menghitung keliling tabung itu sendiri. Setiap bangun ruang tabung pasti memiliki bangun lingkaran yang ukurannya sama pada bagian alas tabung dan tutup tabung, sehingga kita hanya perlu menghitung satu lingkaran tabung (alas atau tutup) supaya bisa menghitung keliling tabung.

Ternyata, jari-jari tabung bukan hanya berfungsi untuk menghitung keliling tabung saja, tetapi juga berfungsi untuk menghitung volume tabung. Maka dari itu, dapat dikatakan bahwa rumus menghitung keliling dan volume tabung sangat berpengaruh terhadap ukuran jari-jari pada tabung. Jadi, sebelum menghitung keliling dan volume tabung, sebaiknya dicari terlebih dahulu jari-jari tabung.

Contoh Soal Perhitungan Keliling Lingkaran

Melansir smpn3payakumbuh.sch.id, berikut contoh soal dan pembahasan keliling lingkaran:

Hitunglah keliling lingkaran yang mempunyai diameter 15 cm dengan π = 3,14.

Keliling = πd = 3,14 x 15 cm = 47,1 cm.

Hitunglah diameter lingkaran yang mempunyai keliling 25,12 cm dan π = 3,14.

Jadi, diameter lingkaran tersebut adalah 8 cm.

Tentukan keliling lingkaran yang berdiameter 21 cm dan π = 22/7.

Keliling = πd = 22/7 x 21 cm = 22 x 3 cm = 66 cm.

Tentukan keliling lingkaran yang berdiameter 35 cm dan π = 22/7.

Keliling = πd = 22/7 x 35 cm = 22 x 5 cm = 110 cm.

Tentukan keliling lingkaran yang berdiameter 49 cm dan π = 22/7.

Keliling = πd = 22/7 x 49 cm = 22 x 7 cm = 154 cm.

Tentukan keliling lingkaran yang berdiameter 38,5 cm dan π = 22/7/

Keliling = πd = 22/7 x 38,5 cm = 22 x 5,5 cm = 121 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 10 cm dan π = 3,14.

Keliling = 2πr = 2 x 3,14 x 10 cm = 62,8 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 15 cm dan π = 3,14.

Keliling = 2πr = 2 x 3,14 x 15 cm = 94,2 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 36 cm dan π = 3,14.

Keliling = 2πr = 2 x 3,14 x 36 cm = 226,08 cm.

Tentukan keliling lingkaran yang panjang jari-jarinya 15,5 cm dan π = 3,14.

Keliling = 2πr = 2 x 3,14 x 15,5 cm = 97,34 cm.

Diameter mata uang koin lima ratus rupiah adalah 15 mm. Hitunglah kelilingnya.

Keliling = 2πr = 2 x 3,14 x 15 mm = 94,2 mm.

Diameter sebuah roda mobil adalah 42 cm. Hitunglah keliling roda tersebut.

Keliling = πd = 22/7 x 42 cm = 22 x 6 cm = 132 cm.

Rumus Volume Tabung, Luas Permukaan, & Keliling Alas – Dalam matematika terdapat sebuah materi atau pembahasan tentang bangun ruang. Bangun ruang adalah bangun-bangun yang memiliki suatu ruang dan dapat dapat dihitung dengan volume bangunnya. Maka dari itu, dikarenakan bangun ruang memiliki suatu ruang, maka biasanya bangun ruang dapat diisi dengan benda-benda lain. Nah, barang yang dapat diisi di dalam bangun ruang harus sesuai dengan banyaknya volume yang ada pada bangun ruang tersebut.

Setiap bangun ruang memiliki bentuk yang berbeda-beda, sehingga untuk menjumlahkan volumenya juga berbeda-beda. Selain itu, bangun ruang yang memiliki bentuk yang sama juga bisa memiliki volume yang berbeda juga. Volume yang berbeda ini terletak pada ukuran dari bangun ruang yang satu dengan bangun ruang yang lainnya, seperti tinggi yang berbeda, panjang yang berbeda, dan jari-jari yang berbeda.

Bangun ruang memiliki dimensi yang berbeda dengan bangun datar. Jumlah dimensi yang terdapat pada bangun ruang berjumlah 3 dimensi, sedangkan jumlah dimensi yang ada pada bangun datar berjumlah 2 dimensi saja. Perbedaan dimensi ini menandakan bahwa bangun datar tak bisa diisi dengan benda-benda lain, mengapa begitu? Hal ini dikarenakan bangun datar tidak memiliki ruang yang dapat menampung beberapa benda didalamnya. Meskipun bangun datar tidak memiliki ruang, tetapi adanya atau terbentuknya bangun ruang bisa terjadi karena adanya bangun datar di dalam bangun ruang tersebut.

Bangun ruang itu sendiri memiliki berbagai macam bentuk yang di mana setiap bentuknya selalu memiliki ciri-cirinya masing-masing. Setiap bangun ruang juga memiliki rumus yang berbeda. Salah satu bangun ruang yang memiliki ciri khas dan volume adalah bangun ruang tabung. Bangun ruang tabung merupakan bangun ruang yang terbentuk karena adanya alas atau penutup dari dua buah lingkaran. Nah, artikel ini akan membahas lebih dalam bangun ruang tabung, mulai dari pengertian hingga rumus-rumusnya, jadi, simak ulasan ini sampai habis, Grameds.

Pada dasarnya bangun ruang tabung ini juga sering dikenal dengan istilah silinder. Tabung adalah sebuah bangun ruang yang mempunyai sisi lengkung dan terdiri dari 3 sisi dan dua buah rusuk. Bidang sisi yang ada pada tabung terletak pada bagian alas atau alas tabung yang terdiri dari 1 buah sisi serta 1 sisi lagi terletak pada bidang lengkung bangun ruang tabung. Ternyata, bidang lengkung yang ada pada tabung sering dikenal dengan sebutan selimut tabung karena menutupi semua “badan” tabung. Satu lagi, bidang sisi tabung terletak pada bagian atas tabung atau lebih sering dikenal dengan sebutan tutup tabung.

Setelah membahas bidang sisi yang ada di dalam tabung, maka kamu perlu mengetahui jumlah rusuk yang ada di dalam bangun ruang tabung. Dalam hal ini, jumlah rusuk yang ada di dalam tabung ada 2. Rusuk tabung ini terletak pada bagian kanan dan kiri bidang lengkung tabung atau selimut tabung. Rusuk tabung ini bisa dibilang sebagai garis yang berpotongan antara sisi tabung.

Hal yang perlu digarisbawahi dari bangun ruang tabung ini terletak pada bagian bagian alas tabung dan tutup tabung yang merupakan bentuk bangun datar lingkaran yang harus memiliki bangun ruang (lingkaran) yang sama dan sejajar. Oleh karena itu, ketika menghitung volume hampir sama dengan cara menghitung bangun datar lingkaran.

Meskipun pada bagian bidang sisi lengkung tabung terdapat dua rusuk, tetapi pada kenyataannya, tabung itu sendiri tidak memiliki titik sudut. Hal ini dikarenakan pada bangun ruang tabung tidak ada rusuk yang saling bertemu yang kemudian dapat membentuk titik sudut. Lain halnya dengan bangun ruang kubus atau balok yang memiliki titik sudut yang dapat dihitung.

Rasanya kurang lengkap kalau membahas pengertian tabung, tetapi membahas pengertian tabung berdasarkan Kamus Besar Bahasa Indonesia (KBBI). Tabung adalah tempat sesuatu yang bentuknya seperti bumbung. Oleh sebab itu, tabung ini sering dijadikan sebagai suatu wadah untuk menyimpan sesuatu. Terlebih lagi, wadah berbentuk tabung ini memiliki ruang yang cukup luas, sehingga sering digunakan dalam kehidupan sehari-hari, seperti gelas, teko, dan lain-lain.

Bangun ruang tabung sebenarnya sudah sering kita temukan pada beberapa barang dagangan yang dijual di warung, seperti susu kaleng, botol minyak, botol minuman, dan lain-lain. Selain itu, tabung juga bisa ditemukan pada benda-benda di dalam rumah, seperti gelas, toples, botol minum, dan sebagainya. Jadi, apakah di dalam rumah kamu ada benda berbentuk tabung?

Dengan demikian, tabung sebenarnya sudah hampir sering kita jumpai dalam kehidupan kita sehari-hari. Selain itu, tabung adalah bangun ruang yang memiliki 3 buah bidang sisi dan 2 buah rusuk yang memiliki fungsi sebagai wadah dari sesuatu.

Seperti yang sudah dibahas sebelumnya, jika setiap bangun ruang pasti memiliki ciri-ciri yang berbeda. Berikut ini ciri-ciri yang ada pada bangun ruang tabung.

Dalam satu bangun ruang tabung terdapat 3 sisi didalamnya. Dengan adanya 3 sisi tersebut, maka bangun ruang tabung bisa terbentuk. Selain itu, ketiga sisi yang ada pada bangun ruang tabung, kita juga bisa menghitung volume pada tabung. Adapun 3 sisi bangun ruang pada tabung terletak pada bagian sisi alas tabung, bagian sisi tutup tabung, dan bagian sisi selimut tabung.

Pada bagian sisi alas tabung dan sisi tutup tabung merupakan kunci dari terbentuknya bangun ruang tabung. Hal ini dikarenakan dengan adanya sisi alas dan sisi tutup, maka sisi selimut dapat tertutupi. Selain itu, pada bagian selimut tabung bisa dibilang memiliki bentuk berupa bangun datar persegi panjang, mengapa begitu? Karena bangun persegi panjang tersebut menjadi penghubung antara bagian sisi alas tabung dengan bagian sisi tutup tabung.

Luas Permukaan Tabung

Untuk menghitung luas permukaan tabung dapat dihitung dengan cara menjumlahkan luas ketiga sisinya.

Luas permukaan tabung = Luas alas + Luas tutup + Luas selimut tabung

Luas selimut tabung = 2 x 𝜋 x r x t

Luas Permukaan Tabung

Untuk menghitung luas permukaan tabung dapat dihitung dengan cara menjumlahkan luas ketiga sisinya.

Luas permukaan tabung = Luas alas + Luas tutup + Luas selimut tabung

Luas selimut tabung = 2 x 𝜋 x r x t

Rumus keliling lingkaran

Guna menghitung keseluruhan panjang sisi dari lingkaran, kamu perlu menghitung menggunakan rumus keliling lingkaran. Untuk cara menghitung keliling lingkaran, bisa menggunakan jari-jari atau ukuran diameter yang biasanya telah disebutkan di soal.

Adapun rumus keliling lingkaran adalah

K Lingkaran = π x d (jika yang diketahui adalah diameter) atau

K Lingkaran = π x 2r (apabila yang disebutkan dalam soal adalah jari-jari)

π phi =  bisa 3,14 atau 22/7

r = jari-jari lingkaran

d = diameter lingkaran

Karena π ada dua opsi yang bisa dipilih, maka sesuaikan dengan panjang jari-jari atau diameternya, ya. Apabila salah satunya merupakan kelipatan tujuh (7, 14, 21, dan seterusnya), maka gunakan 22/7. Namun, apabila bukan kelipatan tujuh, akan lebih mudah jika pakai 3,14.

Baca Juga: Aturan Sinus dan Cosinus dalam Trigonometri Matematika

Contoh soal keliling lingkaran dengan jari-jari

Contoh soal keliling lingkaran dengan jari-jari

Ani sedang bermain dengan sebuah roda yang memiliki jari-jari sepanjang 56 cm. Berapakah panjang keliling roda berbentuk lingkaran tersebut?

Lanjutkan membaca artikel di bawah

Karena yang diketahui merupakan jari-jari, maka rumus yang digunakan adalah Keliling Lingkaran = π x 2r. Selain itu, angka jari-jari merupakan kelipatan tujuh yang berarti menggunakan 22/7 sebagai phi. Selanjutnya, kamu tinggal memasukkan angka yang ada.

Jadi, keliling roda yang memiliki panjang jari-jari 56 cm tersebut adalah 352 cm.

Keliling Alas Atau Tutup Tabung

Untuk menghitung alas atau tutup tabung dapat dihitung menggunakan rumus sebagai berikut:

Bangun ruang tabung atau silinder memiliki beberapa unsur yang terdiri dari, sisi tabung, selimut tabung, jari-jari tabung, diameter tabung, dan tinggi tabung.

Rumus Luas Setengah Lingkaran

Adapun rumus luas setengah lingkaran adalah (π x r x r)/2.

Sebuah lingkaran memiliki jari-jari 10 cm, maka luas setengah lingkaran adalah…

Rumus setengah lingkaran adalah (π x r x r)/2.

Maka L = (3,14 x 10 x 10)/2 = 157 cm2.

Jadi, luas setengah lingkaran tersebut adalah 157 cm2.